ActivePerl Documentation
|
NAMEperlguts - Introduction to the Perl API
DESCRIPTIONThis document attempts to describe how to use the Perl API, as well as containing some info on the basic workings of the Perl core. It is far from complete and probably contains many errors. Please refer any questions or comments to the author below.
Variables
DatatypesPerl has three typedefs that handle Perl's three main data types:
SV Scalar Value
AV Array Value
HV Hash Value
Each typedef has specific routines that manipulate the various data types.
What is an ``IV''?Perl uses a special typedef IV which is a simple signed integer type that is guaranteed to be large enough to hold a pointer (as well as an integer). Additionally, there is the UV, which is simply an unsigned IV. Perl also uses two special typedefs, I32 and I16, which will always be at least 32-bits and 16-bits long, respectively. (Again, there are U32 and U16, as well.)
Working with SVsAn SV can be created and loaded with one command. There are four types of values that can be loaded: an integer value (IV), a double (NV), a string, (PV), and another scalar (SV). The six routines are:
SV* newSViv(IV);
SV* newSVnv(double);
SV* newSVpv(const char*, int);
SV* newSVpvn(const char*, int);
SV* newSVpvf(const char*, ...);
SV* newSVsv(SV*);
To change the value of an *already-existing* SV, there are seven routines:
void sv_setiv(SV*, IV);
void sv_setuv(SV*, UV);
void sv_setnv(SV*, double);
void sv_setpv(SV*, const char*);
void sv_setpvn(SV*, const char*, int)
void sv_setpvf(SV*, const char*, ...);
void sv_setpvfn(SV*, const char*, STRLEN, va_list *, SV **, I32, bool);
void sv_setsv(SV*, SV*);
Notice that you can choose to specify the length of the string to be
assigned by using The arguments of
The All SVs that contain strings should be terminated with a NUL character. If it is not NUL-terminated there is a risk of core dumps and corruptions from code which passes the string to C functions or system calls which expect a NUL-terminated string. Perl's own functions typically add a trailing NUL for this reason. Nevertheless, you should be very careful when you pass a string stored in an SV to a C function or system call. To access the actual value that an SV points to, you can use the macros:
SvIV(SV*)
SvUV(SV*)
SvNV(SV*)
SvPV(SV*, STRLEN len)
SvPV_nolen(SV*)
which will automatically coerce the actual scalar type into an IV, UV, double, or string. In the Also remember that C doesn't allow you to safely say
SV *s;
STRLEN len;
char * ptr;
ptr = SvPV(s, len);
foo(ptr, len);
If you want to know if the scalar value is TRUE, you can use:
SvTRUE(SV*)
Although Perl will automatically grow strings for you, if you need to force Perl to allocate more memory for your SV, you can use the macro
SvGROW(SV*, STRLEN newlen)
which will determine if more memory needs to be allocated. If so, it will
call the function If you have an SV and want to know what kind of data Perl thinks is stored in it, you can use the following macros to check the type of SV you have.
SvIOK(SV*)
SvNOK(SV*)
SvPOK(SV*)
You can get and set the current length of the string stored in an SV with the following macros:
SvCUR(SV*)
SvCUR_set(SV*, I32 val)
You can also get a pointer to the end of the string stored in the SV with the macro:
SvEND(SV*)
But note that these last three macros are valid only if If you want to append something to the end of string stored in an
void sv_catpv(SV*, const char*);
void sv_catpvn(SV*, const char*, STRLEN);
void sv_catpvf(SV*, const char*, ...);
void sv_catpvfn(SV*, const char*, STRLEN, va_list *, SV **, I32, bool);
void sv_catsv(SV*, SV*);
The first function calculates the length of the string to be appended by
using The If you know the name of a scalar variable, you can get a pointer to its SV by using the following:
SV* get_sv("package::varname", FALSE);
This returns NULL if the variable does not exist. If you want to know if this variable (or any other SV) is actually
SvOK(SV*)
The scalar There are also the two values Do not be fooled into thinking that
SV* sv = (SV*) 0;
if (I-am-to-return-a-real-value) {
sv = sv_2mortal(newSViv(42));
}
sv_setsv(ST(0), sv);
This code tries to return a new SV (which contains the value 42) if it should
return a real value, or undef otherwise. Instead it has returned a NULL
pointer which, somewhere down the line, will cause a segmentation violation,
bus error, or just weird results. Change the zero to To free an SV that you've created, call
What's Really Stored in an SV?Recall that the usual method of determining the type of scalar you have is
to use If you really need to know if you have an integer, double, or string pointer in an SV, you can use the following three macros instead:
SvIOKp(SV*)
SvNOKp(SV*)
SvPOKp(SV*)
These will tell you if you truly have an integer, double, or string pointer stored in your SV. The ``p'' stands for private. In general, though, it's best to use the
Working with AVsThere are two ways to create and load an AV. The first method creates an empty AV:
AV* newAV();
The second method both creates the AV and initially populates it with SVs:
AV* av_make(I32 num, SV **ptr);
The second argument points to an array containing Once the AV has been created, the following operations are possible on AVs:
void av_push(AV*, SV*);
SV* av_pop(AV*);
SV* av_shift(AV*);
void av_unshift(AV*, I32 num);
These should be familiar operations, with the exception of Here are some other functions:
I32 av_len(AV*);
SV** av_fetch(AV*, I32 key, I32 lval);
SV** av_store(AV*, I32 key, SV* val);
The
void av_clear(AV*);
void av_undef(AV*);
void av_extend(AV*, I32 key);
The If you know the name of an array variable, you can get a pointer to its AV by using the following:
AV* get_av("package::varname", FALSE);
This returns NULL if the variable does not exist. See Understanding the Magic of Tied Hashes and Arrays for more information on how to use the array access functions on tied arrays.
Working with HVsTo create an HV, you use the following routine:
HV* newHV();
Once the HV has been created, the following operations are possible on HVs:
SV** hv_store(HV*, const char* key, U32 klen, SV* val, U32 hash);
SV** hv_fetch(HV*, const char* key, U32 klen, I32 lval);
The Remember that These two functions check if a hash table entry exists, and deletes it.
bool hv_exists(HV*, const char* key, U32 klen);
SV* hv_delete(HV*, const char* key, U32 klen, I32 flags);
If And more miscellaneous functions:
void hv_clear(HV*);
void hv_undef(HV*);
Like their AV counterparts, Perl keeps the actual data in linked list of structures with a typedef of HE.
These contain the actual key and value pointers (plus extra administrative
overhead). The key is a string pointer; the value is an
I32 hv_iterinit(HV*);
/* Prepares starting point to traverse hash table */
HE* hv_iternext(HV*);
/* Get the next entry, and return a pointer to a
structure that has both the key and value */
char* hv_iterkey(HE* entry, I32* retlen);
/* Get the key from an HE structure and also return
the length of the key string */
SV* hv_iterval(HV*, HE* entry);
/* Return a SV pointer to the value of the HE
structure */
SV* hv_iternextsv(HV*, char** key, I32* retlen);
/* This convenience routine combines hv_iternext,
hv_iterkey, and hv_iterval. The key and retlen
arguments are return values for the key and its
length. The value is returned in the SV* argument */
If you know the name of a hash variable, you can get a pointer to its HV by using the following:
HV* get_hv("package::varname", FALSE);
This returns NULL if the variable does not exist. The hash algorithm is defined in the
hash = 0;
while (klen--)
hash = (hash * 33) + *key++;
hash = hash + (hash >> 5); /* after 5.6 */
The last step was added in version 5.6 to improve distribution of lower bits in the resulting hash value. See Understanding the Magic of Tied Hashes and Arrays for more information on how to use the hash access functions on tied hashes.
Hash API ExtensionsBeginning with version 5.004, the following functions are also supported:
HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash);
HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash);
bool hv_exists_ent (HV* tb, SV* key, U32 hash);
SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash);
SV* hv_iterkeysv (HE* entry);
Note that these functions take They also return and accept whole hash entries ( The following macros must always be used to access the contents of hash entries. Note that the arguments to these macros must be simple variables, since they may get evaluated more than once. See the perlapi manpage for detailed descriptions of these macros.
HePV(HE* he, STRLEN len)
HeVAL(HE* he)
HeHASH(HE* he)
HeSVKEY(HE* he)
HeSVKEY_force(HE* he)
HeSVKEY_set(HE* he, SV* sv)
These two lower level macros are defined, but must only be used when
dealing with keys that are not
HeKEY(HE* he)
HeKLEN(HE* he)
Note that both
ReferencesReferences are a special type of scalar that point to other data types (including references). To create a reference, use either of the following functions:
SV* newRV_inc((SV*) thing);
SV* newRV_noinc((SV*) thing);
The Once you have a reference, you can use the following macro to dereference the reference:
SvRV(SV*)
then call the appropriate routines, casting the returned To determine if an SV is a reference, you can use the following macro:
SvROK(SV*)
To discover what type of value the reference refers to, use the following macro and then check the return value.
SvTYPE(SvRV(SV*))
The most useful types that will be returned are:
SVt_IV Scalar
SVt_NV Scalar
SVt_PV Scalar
SVt_RV Scalar
SVt_PVAV Array
SVt_PVHV Hash
SVt_PVCV Code
SVt_PVGV Glob (possible a file handle)
SVt_PVMG Blessed or Magical Scalar
See the sv.h header file for more details.
Blessed References and Class ObjectsReferences are also used to support object-oriented programming. In the OO lexicon, an object is simply a reference that has been blessed into a package (or class). Once blessed, the programmer may now use the reference to access the various methods in the class. A reference can be blessed into a package with the following function:
SV* sv_bless(SV* sv, HV* stash);
The /* Still under construction */ Upgrades rv to reference if not already one. Creates new SV for rv to
point to. If
SV* newSVrv(SV* rv, const char* classname);
Copies integer or double into an SV whose reference is
SV* sv_setref_iv(SV* rv, const char* classname, IV iv);
SV* sv_setref_nv(SV* rv, const char* classname, NV iv);
Copies the pointer value (the address, not the string!) into an SV whose
reference is rv. SV is blessed if
SV* sv_setref_pv(SV* rv, const char* classname, PV iv);
Copies string into an SV whose reference is
SV* sv_setref_pvn(SV* rv, const char* classname, PV iv, STRLEN length);
Tests whether the SV is blessed into the specified class. It does not check inheritance relationships.
int sv_isa(SV* sv, const char* name);
Tests whether the SV is a reference to a blessed object.
int sv_isobject(SV* sv);
Tests whether the SV is derived from the specified class. SV can be either
a reference to a blessed object or a string containing a class name. This
is the function implementing the
bool sv_derived_from(SV* sv, const char* name);
To check if you've got an object derived from a specific class you have to write:
if (sv_isobject(sv) && sv_derived_from(sv, class)) { ... }
Creating New VariablesTo create a new Perl variable with an undef value which can be accessed from your Perl script, use the following routines, depending on the variable type.
SV* get_sv("package::varname", TRUE);
AV* get_av("package::varname", TRUE);
HV* get_hv("package::varname", TRUE);
Notice the use of TRUE as the second parameter. The new variable can now be set, using the routines appropriate to the data type. There are additional macros whose values may be bitwise OR'ed with the
GV_ADDMULTI Marks the variable as multiply defined, thus preventing the
"Name <varname> used only once: possible typo" warning.
GV_ADDWARN Issues the warning "Had to create <varname> unexpectedly" if
the variable did not exist before the function was called.
If you do not specify a package name, the variable is created in the current package.
Reference Counts and MortalityPerl uses an reference count-driven garbage collection mechanism. SVs, AVs, or HVs (xV for short in the following) start their life with a reference count of 1. If the reference count of an xV ever drops to 0, then it will be destroyed and its memory made available for reuse. This normally doesn't happen at the Perl level unless a variable is undef'ed or the last variable holding a reference to it is changed or overwritten. At the internal level, however, reference counts can be manipulated with the following macros:
int SvREFCNT(SV* sv);
SV* SvREFCNT_inc(SV* sv);
void SvREFCNT_dec(SV* sv);
However, there is one other function which manipulates the reference
count of its argument. The For example, imagine you want to return a reference from an XSUB function.
Inside the XSUB routine, you create an SV which initially has a reference
count of one. Then you call The correct procedure, then, is to use There are some convenience functions available that can help with the destruction of xVs. These functions introduce the concept of ``mortality''. An xV that is mortal has had its reference count marked to be decremented, but not actually decremented, until ``a short time later''. Generally the term ``short time later'' means a single Perl statement, such as a call to an XSUB function. The actual determinant for when mortal xVs have their reference count decremented depends on two macros, SAVETMPS and FREETMPS. See the perlcall manpage and the perlxs manpage for more details on these macros. ``Mortalization'' then is at its simplest a deferred You should be careful about creating mortal variables. Strange things can happen if you make the same value mortal within multiple contexts, or if you make a variable mortal multiple times. To create a mortal variable, use the functions:
SV* sv_newmortal()
SV* sv_2mortal(SV*)
SV* sv_mortalcopy(SV*)
The first call creates a mortal SV, the second converts an existing
SV to a mortal SV (and thus defers a call to The mortal routines are not just for SVs -- AVs and HVs can be
made mortal by passing their address (type-casted to
Stashes and GlobsA ``stash'' is a hash that contains all of the different objects that are contained within a package. Each key of the stash is a symbol name (shared by all the different types of objects that have the same name), and each value in the hash table is a GV (Glob Value). This GV in turn contains references to the various objects of that name, including (but not limited to) the following:
Scalar Value
Array Value
Hash Value
I/O Handle
Format
Subroutine
There is a single stash called ``PL_defstash'' that holds the items that exist in the ``main'' package. To get at the items in other packages, append the string ``::'' to the package name. The items in the ``Foo'' package are in the stash ``Foo::'' in PL_defstash. The items in the ``Bar::Baz'' package are in the stash ``Baz::'' in ``Bar::'''s stash. To get the stash pointer for a particular package, use the function:
HV* gv_stashpv(const char* name, I32 create)
HV* gv_stashsv(SV*, I32 create)
The first function takes a literal string, the second uses the string stored
in the SV. Remember that a stash is just a hash table, so you get back an
The name that Alternately, if you have an SV that is a blessed reference, you can find out the stash pointer by using:
HV* SvSTASH(SvRV(SV*));
then use the following to get the package name itself:
char* HvNAME(HV* stash);
If you need to bless or re-bless an object you can use the following function:
SV* sv_bless(SV*, HV* stash)
where the first argument, an For more information on references and blessings, consult the perlref manpage.
Double-Typed SVsScalar variables normally contain only one type of value, an integer, double, pointer, or reference. Perl will automatically convert the actual scalar data from the stored type into the requested type. Some scalar variables contain more than one type of scalar data. For
example, the variable To force multiple data values into an SV, you must do two things: use the
SvIOK_on
SvNOK_on
SvPOK_on
SvROK_on
The particular macro you must use depends on which For example, to create a new Perl variable called ``dberror'' that contains both the numeric and descriptive string error values, you could use the following code:
extern int dberror;
extern char *dberror_list;
SV* sv = get_sv("dberror", TRUE);
sv_setiv(sv, (IV) dberror);
sv_setpv(sv, dberror_list[dberror]);
SvIOK_on(sv);
If the order of
Magic Variables[This section still under construction. Ignore everything here. Post no bills. Everything not permitted is forbidden.] Any SV may be magical, that is, it has special features that a normal
SV does not have. These features are stored in the SV structure in a
linked list of
struct magic {
MAGIC* mg_moremagic;
MGVTBL* mg_virtual;
U16 mg_private;
char mg_type;
U8 mg_flags;
SV* mg_obj;
char* mg_ptr;
I32 mg_len;
};
Note this is current as of patchlevel 0, and could change at any time.
Assigning MagicPerl adds magic to an SV using the sv_magic function:
void sv_magic(SV* sv, SV* obj, int how, const char* name, I32 namlen);
The If The The sv_magic function uses The There is also a function to add magic to an
void hv_magic(HV *hv, GV *gv, int how);
This simply calls To remove the magic from an SV, call the function sv_unmagic:
void sv_unmagic(SV *sv, int type);
The
Magic Virtual TablesThe The
int (*svt_get)(SV* sv, MAGIC* mg);
int (*svt_set)(SV* sv, MAGIC* mg);
U32 (*svt_len)(SV* sv, MAGIC* mg);
int (*svt_clear)(SV* sv, MAGIC* mg);
int (*svt_free)(SV* sv, MAGIC* mg);
This MGVTBL structure is set at compile-time in
Function pointer Action taken
---------------- ------------
svt_get Do something after the value of the SV is retrieved.
svt_set Do something after the SV is assigned a value.
svt_len Report on the SV's length.
svt_clear Clear something the SV represents.
svt_free Free any extra storage associated with the SV.
For instance, the MGVTBL structure called
{ magic_get, magic_set, magic_len, 0, 0 }
Thus, when an SV is determined to be magical and of type '\0', if a get
operation is being performed, the routine The current kinds of Magic Virtual Tables are:
mg_type MGVTBL Type of magic
------- ------ ----------------------------
\0 vtbl_sv Special scalar variable
A vtbl_amagic %OVERLOAD hash
a vtbl_amagicelem %OVERLOAD hash element
c (none) Holds overload table (AMT) on stash
B vtbl_bm Boyer-Moore (fast string search)
E vtbl_env %ENV hash
e vtbl_envelem %ENV hash element
f vtbl_fm Formline ('compiled' format)
g vtbl_mglob m//g target / study()ed string
I vtbl_isa @ISA array
i vtbl_isaelem @ISA array element
k vtbl_nkeys scalar(keys()) lvalue
L (none) Debugger %_<filename
l vtbl_dbline Debugger %_<filename element
o vtbl_collxfrm Locale transformation
P vtbl_pack Tied array or hash
p vtbl_packelem Tied array or hash element
q vtbl_packelem Tied scalar or handle
S vtbl_sig %SIG hash
s vtbl_sigelem %SIG hash element
t vtbl_taint Taintedness
U vtbl_uvar Available for use by extensions
v vtbl_vec vec() lvalue
x vtbl_substr substr() lvalue
y vtbl_defelem Shadow "foreach" iterator variable /
smart parameter vivification
* vtbl_glob GV (typeglob)
# vtbl_arylen Array length ($#ary)
. vtbl_pos pos() lvalue
~ (none) Available for use by extensions
When an uppercase and lowercase letter both exist in the table, then the uppercase letter is used to represent some kind of composite type (a list or a hash), and the lowercase letter is used to represent an element of that composite type. The '~' and 'U' magic types are defined specifically for use by extensions and will not be used by perl itself. Extensions can use '~' magic to 'attach' private information to variables (typically objects). This is especially useful because there is no way for normal perl code to corrupt this private information (unlike using extra elements of a hash object). Similarly, 'U' magic can be used much like
struct ufuncs {
I32 (*uf_val)(IV, SV*);
I32 (*uf_set)(IV, SV*);
IV uf_index;
};
When the SV is read from or written to, the
void
Umagic(sv)
SV *sv;
PREINIT:
struct ufuncs uf;
CODE:
uf.uf_val = &my_get_fn;
uf.uf_set = &my_set_fn;
uf.uf_index = 0;
sv_magic(sv, 0, 'U', (char*)&uf, sizeof(uf));
Note that because multiple extensions may be using '~' or 'U' magic, it is important for extensions to take extra care to avoid conflict. Typically only using the magic on objects blessed into the same class as the extension is sufficient. For '~' magic, it may also be appropriate to add an I32 'signature' at the top of the private data area and check that. Also note that the
Finding Magic
MAGIC* mg_find(SV*, int type); /* Finds the magic pointer of that type */
This routine returns a pointer to the
int mg_copy(SV* sv, SV* nsv, const char* key, STRLEN klen);
This routine checks to see what types of magic
Understanding the Magic of Tied Hashes and ArraysTied hashes and arrays are magical beasts of the 'P' magic type. WARNING: As of the 5.004 release, proper usage of the array and hash access functions requires understanding a few caveats. Some of these caveats are actually considered bugs in the API, to be fixed in later releases, and are bracketed with [MAYCHANGE] below. If you find yourself actually applying such information in this section, be aware that the behavior may change in the future, umm, without warning. The perl tie function associates a variable with an object that implements the various GET, SET etc methods. To perform the equivalent of the perl tie function from an XSUB, you must mimic this behaviour. The code below carries out the necessary steps - firstly it creates a new hash, and then creates a second hash which it blesses into the class which will implement the tie methods. Lastly it ties the two hashes together, and returns a reference to the new tied hash. Note that the code below does NOT call the TIEHASH method in the MyTie class - see Calling Perl Routines from within C Programs for details on how to do this.
SV*
mytie()
PREINIT:
HV *hash;
HV *stash;
SV *tie;
CODE:
hash = newHV();
tie = newRV_noinc((SV*)newHV());
stash = gv_stashpv("MyTie", TRUE);
sv_bless(tie, stash);
hv_magic(hash, tie, 'P');
RETVAL = newRV_noinc(hash);
OUTPUT:
RETVAL
The The previous paragraph is applicable verbatim to tied hash access using the
[MAYCHANGE]
In other words, the array or hash fetch/store functions don't really
fetch and store actual values in the case of tied arrays and hashes. They
merely call Currently (as of perl version 5.004), use of the hash and array access functions requires the user to be aware of whether they are operating on ``normal'' hashes and arrays, or on their tied variants. The API may be changed to provide more transparent access to both tied and normal data types in future versions. [/MAYCHANGE] You would do well to understand that the TIEARRAY and TIEHASH interfaces are mere sugar to invoke some perl method calls while using the uniform hash and array syntax. The use of this sugar imposes some overhead (typically about two to four extra opcodes per FETCH/STORE operation, in addition to the creation of all the mortal variables required to invoke the methods). This overhead will be comparatively small if the TIE methods are themselves substantial, but if they are only a few statements long, the overhead will not be insignificant.
Localizing changesPerl has a very handy construction
{
local $var = 2;
...
}
This construction is approximately equivalent to
{
my $oldvar = $var;
$var = 2;
...
$var = $oldvar;
}
The biggest difference is that the first construction would
reinstate the initial value of $var, irrespective of how control exits
the block: There is a way to achieve a similar task from C via Perl API: create a
pseudo-block, and arrange for some changes to be automatically
undone at the end of it, either explicit, or via a non-local exit (via
die()). A block-like construct is created by a pair of
Inside such a pseudo-block the following service is available:
The following API list contains functions, thus one needs to
provide pointers to the modifiable data explicitly (either C pointers,
or Perlish
The
Subroutines
XSUBs and the Argument StackThe XSUB mechanism is a simple way for Perl programs to access C subroutines. An XSUB routine will have a stack that contains the arguments from the Perl program, and a way to map from the Perl data structures to a C equivalent. The stack arguments are accessible through the Most of the time, output from the C routine can be handled through use of
the RETVAL and OUTPUT directives. However, there are some cases where the
argument stack is not already long enough to handle all the return values.
An example is the POSIX To handle this situation, the PPCODE directive is used and the stack is extended using the macro:
EXTEND(SP, num);
where Now that there is room on the stack, values can be pushed on it using the macros to push IVs, doubles, strings, and SV pointers respectively:
PUSHi(IV)
PUSHn(double)
PUSHp(char*, I32)
PUSHs(SV*)
And now the Perl program calling
($standard_abbrev, $summer_abbrev) = POSIX::tzname;
An alternate (and possibly simpler) method to pushing values on the stack is to use the macros:
XPUSHi(IV)
XPUSHn(double)
XPUSHp(char*, I32)
XPUSHs(SV*)
These macros automatically adjust the stack for you, if needed. Thus, you
do not need to call For more information, consult the perlxs manpage and the perlxstut manpage.
Calling Perl Routines from within C ProgramsThere are four routines that can be used to call a Perl subroutine from within a C program. These four are:
I32 call_sv(SV*, I32);
I32 call_pv(const char*, I32);
I32 call_method(const char*, I32);
I32 call_argv(const char*, I32, register char**);
The routine most often used is All four routines return the number of arguments that the subroutine returned on the Perl stack. These routines used to be called When using any of these routines (except
dSP
SP
PUSHMARK()
PUTBACK
SPAGAIN
ENTER
SAVETMPS
FREETMPS
LEAVE
XPUSH*()
POP*()
For a detailed description of calling conventions from C to Perl, consult the perlcall manpage.
Memory AllocationAll memory meant to be used with the Perl API functions should be manipulated using the macros described in this section. The macros provide the necessary transparency between differences in the actual malloc implementation that is used within perl. It is suggested that you enable the version of malloc that is distributed with Perl. It keeps pools of various sizes of unallocated memory in order to satisfy allocation requests more quickly. However, on some platforms, it may cause spurious malloc or free errors.
New(x, pointer, number, type);
Newc(x, pointer, number, type, cast);
Newz(x, pointer, number, type);
These three macros are used to initially allocate memory. The first argument The second argument The third and fourth arguments Unlike the
Renew(pointer, number, type);
Renewc(pointer, number, type, cast);
Safefree(pointer)
These three macros are used to change a memory buffer size or to free a
piece of memory no longer needed. The arguments to
Move(source, dest, number, type);
Copy(source, dest, number, type);
Zero(dest, number, type);
These three macros are used to move, copy, or zero out previously allocated
memory. The
PerlIOThe most recent development releases of Perl has been experimenting with removing Perl's dependency on the ``normal'' standard I/O suite and allowing other stdio implementations to be used. This involves creating a new abstraction layer that then calls whichever implementation of stdio Perl was compiled with. All XSUBs should now use the functions in the PerlIO abstraction layer and not make any assumptions about what kind of stdio is being used. For a complete description of the PerlIO abstraction, consult the perlapio manpage.
Putting a C value on Perl stackA lot of opcodes (this is an elementary operation in the internal perl stack machine) put an SV* on the stack. However, as an optimization the corresponding SV is (usually) not recreated each time. The opcodes reuse specially assigned SVs (targets) which are (as a corollary) not constantly freed/created. Each of the targets is created only once (but see Scratchpads and recursion below), and when an opcode needs to put an integer, a double, or a string on stack, it just sets the corresponding parts of its target and puts the target on stack. The macro to put this target on stack is
ScratchpadsThe question remains on when the SVs which are targets for opcodes are created. The answer is that they are created when the current unit -- a subroutine or a file (for opcodes for statements outside of subroutines) -- is compiled. During this time a special anonymous Perl array is created, which is called a scratchpad for the current unit. A scratchpad keeps SVs which are lexicals for the current unit and are
targets for opcodes. One can deduce that an SV lives on a scratchpad
by looking on its flags: lexicals have The correspondence between OPs and targets is not 1-to-1. Different OPs in the compile tree of the unit can use the same target, if this would not conflict with the expected life of the temporary.
Scratchpads and recursionIn fact it is not 100% true that a compiled unit contains a pointer to the scratchpad AV. In fact it contains a pointer to an AV of (initially) one element, and this element is the scratchpad AV. Why do we need an extra level of indirection? The answer is recursion, and maybe (sometime soon) threads. Both these can create several execution pointers going into the same subroutine. For the subroutine-child not write over the temporaries for the subroutine-parent (lifespan of which covers the call to the child), the parent and the child should have different scratchpads. (And the lexicals should be separate anyway!) So each subroutine is born with an array of scratchpads (of length 1). On each entry to the subroutine it is checked that the current depth of the recursion is not more than the length of this array, and if it is, new scratchpad is created and pushed into the array. The targets on this scratchpad are
Compiled code
Code treeHere we describe the internal form your code is converted to by Perl. Start with a simple example: $a = $b + $c; This is converted to a tree similar to this one:
assign-to
/ \
+ $a
/ \
$b $c
(but slightly more complicated). This tree reflects the way Perl parsed your code, but has nothing to do with the execution order. There is an additional ``thread'' going through the nodes of the tree which shows the order of execution of the nodes. In our simplified example above it looks like:
$b ---> $c ---> + ---> $a ---> assign-to
But with the actual compile tree for
Examining the treeIf you have your perl compiled for debugging (usually done with
5 TYPE = add ===> 6
TARG = 1
FLAGS = (SCALAR,KIDS)
{
TYPE = null ===> (4)
(was rv2sv)
FLAGS = (SCALAR,KIDS)
{
3 TYPE = gvsv ===> 4
FLAGS = (SCALAR)
GV = main::b
}
}
{
TYPE = null ===> (5)
(was rv2sv)
FLAGS = (SCALAR,KIDS)
{
4 TYPE = gvsv ===> 5
FLAGS = (SCALAR)
GV = main::c
}
}
This tree has 5 nodes (one per
add
/ \
null null
| |
gvsv gvsv
The execution order is indicated by
Compile pass 1: check routinesThe tree is created by the pseudo-compiler while yacc code feeds it the constructions it recognizes. Since yacc works bottom-up, so does the first pass of perl compilation. What makes this pass interesting for perl developers is that some
optimization may be performed on this pass. This is optimization by
so-called check routines. The correspondence between node names
and corresponding check routines is described in opcode.pl (do not
forget to run A check routine is called when the node is fully constructed except for the execution-order thread. Since at this time there are no back-links to the currently constructed node, one can do most any operation to the top-level node, including freeing it and/or creating new nodes above/below it. The check routine returns the node which should be inserted into the tree (if the top-level node was not modified, check routine returns its argument). By convention, check routines have names
Compile pass 1a: constant foldingImmediately after the check routine is called the returned node is checked for being compile-time executable. If it is (the value is judged to be constant) it is immediately executed, and a constant node with the ``return value'' of the corresponding subtree is substituted instead. The subtree is deleted. If constant folding was not performed, the execution-order thread is created.
Compile pass 2: context propagationWhen a context for a part of compile tree is known, it is propagated down through the tree. At this time the context can have 5 values (instead of 2 for runtime context): void, boolean, scalar, list, and lvalue. In contrast with the pass 1 this pass is processed from top to bottom: a node's context determines the context for its children. Additional context-dependent optimizations are performed at this time. Since at this moment the compile tree contains back-references (via ``thread'' pointers), nodes cannot be free()d now. To allow optimized-away nodes at this stage, such nodes are null()ified instead of free()ing (i.e. their type is changed to OP_NULL).
Compile pass 3: peephole optimizationAfter the compile tree for a subroutine (or for an
How multiple interpreters and concurrency are supportedWARNING: This information is subject to radical changes prior to the Perl 5.6 release. Use with caution.
Background and PERL_IMPLICIT_CONTEXTThe Perl interpreter can be regarded as a closed box: it has an API for feeding it code or otherwise making it do things, but it also has functions for its own use. This smells a lot like an object, and there are ways for you to build Perl so that you can have multiple interpreters, with one interpreter represented either as a C++ object, a C structure, or inside a thread. The thread, the C structure, or the C++ object will contain all the context, the state of that interpreter. Three macros control the major Perl build flavors: MULTIPLICITY, USE_THREADS and PERL_OBJECT. The MULTIPLICITY build has a C structure that packages all the interpreter state, there is a similar thread-specific data structure under USE_THREADS, and the PERL_OBJECT build has a C++ class to maintain interpreter state. In all three cases, PERL_IMPLICIT_CONTEXT is also normally defined, and enables the support for passing in a ``hidden'' first argument that represents all three data structures. All this obviously requires a way for the Perl internal functions to be C++ methods, subroutines taking some kind of structure as the first argument, or subroutines taking nothing as the first argument. To enable these three very different ways of building the interpreter, the Perl source (as it does in so many other situations) makes heavy use of macros and subroutine naming conventions. First problem: deciding which functions will be public API functions and
which will be private. All functions whose names begin (the perlapi manpage itself is generated by embed.pl, a Perl script that generates significant portions of the Perl source code. It has a list of almost all the functions defined by the Perl interpreter along with their calling characteristics and some flags. Functions that are part of the public API are marked with an 'A' in its flags.) Second problem: there must be a syntax so that the same subroutine declarations and calls can pass a structure as their first argument, or pass nothing. To solve this, the subroutines are named and declared in a particular way. Here's a typical start of a static function used within the Perl guts: STATIC void S_incline(pTHX_ char *s) STATIC becomes ``static'' in C, and is #define'd to nothing in C++. A public function (i.e. part of the internal API, but not necessarily sanctioned for use in extensions) begins like this: void Perl_sv_setsv(pTHX_ SV* dsv, SV* ssv)
When Perl is built without PERL_IMPLICIT_CONTEXT, there is no first argument containing the interpreter's context. The trailing underscore in the pTHX_ macro indicates that the macro expansion needs a comma after the context argument because other arguments follow it. If PERL_IMPLICIT_CONTEXT is not defined, pTHX_ will be ignored, and the subroutine is not prototyped to take the extra argument. The form of the macro without the trailing underscore is used when there are no additional explicit arguments. When a core function calls another, it must pass the context. This
is normally hidden via macros. Consider
ifdef PERL_IMPLICIT_CONTEXT
define sv_setsv(a,b) Perl_sv_setsv(aTHX_ a, b)
/* can't do this for vararg functions, see below */
else
define sv_setsv Perl_sv_setsv
endif
This works well, and means that XS authors can gleefully write:
sv_setsv(foo, bar);
and still have it work under all the modes Perl could have been compiled with. Under PERL_OBJECT in the core, that will translate to either:
CPerlObj::Perl_sv_setsv(foo,bar); # in CPerlObj functions,
# C++ takes care of 'this'
or
pPerl->Perl_sv_setsv(foo,bar); # in truly static functions,
# see objXSUB.h
Under PERL_OBJECT in extensions (aka PERL_CAPI), or under MULTIPLICITY/USE_THREADS w/ PERL_IMPLICIT_CONTEXT in both core and extensions, it will be:
Perl_sv_setsv(aTHX_ foo, bar); # the canonical Perl "API"
# for all build flavors
This doesn't work so cleanly for varargs functions, though, as macros
imply that the number of arguments is known in advance. Instead we
either need to spell them out fully, passing The context-free version of Perl_warner is called
Perl_warner_nocontext, and does not take the extra argument. Instead
it does dTHX; to get the context from thread-local storage. We
You can ignore [pad]THX[xo] when browsing the Perl headers/sources. Those are strictly for use within the core. Extensions and embedders need only be aware of [pad]THX.
How do I use all this in extensions?When Perl is built with PERL_IMPLICIT_CONTEXT, extensions that call any functions in the Perl API will need to pass the initial context argument somehow. The kicker is that you will need to write it in such a way that the extension still compiles when Perl hasn't been built with PERL_IMPLICIT_CONTEXT enabled. There are three ways to do this. First, the easy but inefficient way, which is also the default, in order to maintain source compatibility with extensions: whenever XSUB.h is #included, it redefines the aTHX and aTHX_ macros to call a function that will return the context. Thus, something like:
sv_setsv(asv, bsv);
in your extesion will translate to this when PERL_IMPLICIT_CONTEXT is in effect:
Perl_sv_setsv(Perl_get_context(), asv, bsv);
or to this otherwise:
Perl_sv_setsv(asv, bsv);
You have to do nothing new in your extension to get this; since the Perl library provides Perl_get_context(), it will all just work. The second, more efficient way is to use the following template for your Foo.xs:
#define PERL_NO_GET_CONTEXT /* we want efficiency */
#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
static my_private_function(int arg1, int arg2);
static SV *
my_private_function(int arg1, int arg2)
{
dTHX; /* fetch context */
... call many Perl API functions ...
}
[... etc ...]
MODULE = Foo PACKAGE = Foo
/* typical XSUB */
void
my_xsub(arg)
int arg
CODE:
my_private_function(arg, 10);
Note that the only two changes from the normal way of writing an
extension is the addition of a The third, even more efficient way is to ape how it is done within the Perl guts:
#define PERL_NO_GET_CONTEXT /* we want efficiency */
#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
/* pTHX_ only needed for functions that call Perl API */
static my_private_function(pTHX_ int arg1, int arg2);
static SV *
my_private_function(pTHX_ int arg1, int arg2)
{
/* dTHX; not needed here, because THX is an argument */
... call Perl API functions ...
}
[... etc ...]
MODULE = Foo PACKAGE = Foo
/* typical XSUB */
void
my_xsub(arg)
int arg
CODE:
my_private_function(aTHX_ arg, 10);
This implementation never has to fetch the context using a function call, since it is always passed as an extra argument. Depending on your needs for simplicity or efficiency, you may mix the previous two approaches freely. Never add a comma after
Future Plans and PERL_IMPLICIT_SYSJust as PERL_IMPLICIT_CONTEXT provides a way to bundle up everything that the interpreter knows about itself and pass it around, so too are there plans to allow the interpreter to bundle up everything it knows about the environment it's running on. This is enabled with the PERL_IMPLICIT_SYS macro. Currently it only works with PERL_OBJECT, but is mostly there for MULTIPLICITY and USE_THREADS (see inside iperlsys.h). This allows the ability to provide an extra pointer (called the ``host''
environment) for all the system calls. This makes it possible for
all the system stuff to maintain their own state, broken down into
seven C structures. These are thin wrappers around the usual system
calls (see win32/perllib.c) for the default perl executable, but for a
more ambitious host (like the one that would do The Perl engine/interpreter and the host are orthogonal entities. There could be one or more interpreters in a process, and one or more ``hosts'', with free association between them.
AUTHORSUntil May 1997, this document was maintained by Jeff Okamoto <okamoto@corp.hp.com>. It is now maintained as part of Perl itself by the Perl 5 Porters <perl5-porters@perl.org>. With lots of help and suggestions from Dean Roehrich, Malcolm Beattie, Andreas Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil Bowers, Matthew Green, Tim Bunce, Spider Boardman, Ulrich Pfeifer, Stephen McCamant, and Gurusamy Sarathy. API Listing originally by Dean Roehrich <roehrich@cray.com>. Modifications to autogenerate the API listing (the perlapi manpage) by Benjamin Stuhl.
SEE ALSOperlapi(1), perlintern(1), perlxs(1),
|